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TRANSLATOR' S NOTE

The following two errors have been noticed in the Russian text of

this paper:

Page 88 (of the Russian text): The first equation at the top of the page

is missing the term following the multiplication sign.

Page 89 (of the Russian text): The last equation reads
to_

w = sin 2 i I._ (Eoa-Eos) dt.
--CO

It should read

w = sin 2 i [
2_ ' (Eoa-Eos)dt"
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QUANTUM MECHANICAL CALCULATION OF CHARGE EXCHANGE
PROBABILITY DURING COLLISIONS

By

Yu. N. Demkov

i. ESSENCE OF THE CHARGE EXCHANGE PROCESS

One of the possible results of a collision between two atomic

systems (atoms, positive or negative ions) is a charge exchange, that
is, a transfer of electrons from one system to another. These processes
might be presented schematically by formulas in the same way as a nuclear
reaction is presented. For instance:

A+ + B =A+ B+;

A++ + B = A+ + B+;

A+ B =A++ B-;

A- + B = A+ B-, etc.

Henceforth, all our examples will pertain to the first and second

of these formulas, that is, to the collisions of positive ions with
neutral atoms, since similar processes are of the highest practical
interest.

Of particular interest is the case of the so-called resonance

charge exchange, that is, a charge exchange during a collision of an

atom and an ion of one and the same element. As was experimentally
disclosed (Ref. i), during the transition of ions through a gas the dis-
persion increases sharply if the gas is of the same nature as the ion

+

(He+ and He, H2 and H2, etc.).

Therefore, large numbers of slow ions appear. This can be
explained by the fact that the effective cross section of the resonance

charge exchange is great. That is, the charge exchange can also take
place at large impact parameters and the ion becomes transformed into a
neutral atom while continuing to travel without deviations, and an atom

becomes transformed into an ion and remains almost stationary.

Such an increase in the effective cross section of charge exchange,
as will be shown further on, is connected with the fact that the electron

in the given case does not change its energy auring the transition /75
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from one atom to another; that is, a unique resonance of the energy
levels takes place. If on the other hand a similar resonance is absent,

then the change in energy of the electron is compensated by a change in
the kinetic energy of the nuclei. A similar energetic exchange hinders
the process and decreases the effective cross section.

Strictly speaking a resonance charge exchange cannot be distin-
guished from an elastic scattering because the nuclei in this case are
indistinguishable and, in the case of an accurate quantum mechanical
calculation, it would be necessary to take into consideration a nuclear
exchange. Considering that a neutral atom is unexcited Defore as well as

after the collision, we would have then concluded that the scattering of
ions occurs more frequently in the directions from @ _ 0 and 0 _ J_ (0 is
the scattering angle of the ions motion from the original). The scat-
tering of ions in the direction of @ _ 0 corresponds to an elastic
collision, and a scattering in the direction of e _ _ corresponds to a
charge exchange. A nuclear exchange will basically have an effect on the

scattering at intermediate angles, which takes place during close to
head-on collisions. Such collisions are improbable and they do not in-

fl_ence the over-all results. Thus we might disregard a nuclear exchange,
consider nuclei as being distinguishable and, by the same token, separate
scattering and charge exchange.

Experimentally the problem is reduced to a calculation of the
number of slow ions appearing during the passage through a gas of a beam
of ions of the same gas.

Such experiments were conducted on numerous occasions (Ref. 2),
whereby the following was discovered: an effective cross section of

resonance charge exchange has a magnitude on the order of I00 a2 (a is
the Bohr radius). This cross section decreases slowly with the increase
of energy of the colliding particles; with the decrease of the ionization
potential of the atom its effective cross section increases.

This paper presents a quantum mechanical calculation of charge
exchange phenomena, whereby the above mentioned experimental results
coincide with the results of our calculation.

The investigation of resonance charge exchange is necessary,
particularly in order to explain the processes which take place in the
plasma of a gaseous discharge, which consists of atoms and ions of any
given element and electrons. A collision of all these particles takes
place in the plasma at energies on the order of an electron volt.

It was pointed out for the first time by L. A. Sena (Ref. 3) that

the resonance charge exchange plays a fundamental role among all phenom-
ena that take place in plasma, since the cross section of charge exchange
is large in comparison with the cross sections of other processes.
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Therefore any given theory of a gas discharge plasma should /76
take into consideration the 7henomena of charge exchange.

V. A. Fok based his work "On the Motion of Positive lons in a

Plasma" (Ref. 4), on the assumption of the fundamental role of charge
exchange in a plasma. It is accepted in this paper thaL the cross

section of charge exchange does not depend on the energy of the colliding
particles, and the velocity distribution of ions is determined exclusively
by a charge exchange.

All this makes the quantum mechanical calculation of a resonance

charge exchange an urgent problem.

Among the methods which were _pplied during the examination of a
charge exchange, the following can be mentioned:

I. The parametric method. In this method both nuclei are con-
sidered to be in the first approximation. The parametric method was
applied for the first time for a charge exchange in the work by Brinkman

and Kramers (Ref. 5). However, in the case of a resonance charge exchange
their results are not good as far as it is known, since the first approx-
imation in this case yields an untrue result for small impact parameters.
On the other hand, in the case of an absence of a resonance, the result
is true only at energies of more than I00 ev.

2. The Born approximation. This method is also applicable at
energies of more than i00 ev. Calculations were conducted in the same
paper by Brinkman and Kramers whereby the authors have discovered that
the parametric method, as well as the Born approximation, leads to

identical results. The reason fnr this was explained in the work by Mott
(Ref. 6). It is proven in this paper that for large energies both methods
are equivalent,

3. In addition, the phenomena of charge exchange were investigated
by Massey and Smith (Ref. 7) using the method of distortion of wave
functions. In their method the wave function is separated into specific

functions of the electron in a field of two stationary nuclei. Such a
method obviously is most accurate. However, the calculations are very
cumbersome since wave functions are not accurately known and it is

necessary to be satisfied with a very rough approximation; therefore, the
result cannot be guaranteed. In the indicated work results were given

only for the case of He++ He at an ion energy of 1,000 ev.

4. Finally, a case of resonance charge exchange is discussed in
particular in the book by L. A. Sena (Ref. _ . This author has achieved
a very good agreement with experimental data; however, the results were
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obtained in the presen_-, of very loose assumptions so that these results
pertain only to the qualitative evaluation of the phenomena.

This paper utilizes the parametric method. In the case of a
resonance charge exchange this method is applied within very broad limits,

beginning, for instance, with an energy of i ev and lower. This is /77
due to the fact that the relative speed of the nuclei does not change
during collision.

In accordance with the proposition by P. P. Pavinsky, this method

is somewhat changed so that it is applicable to a resonance charge ex-
change. In addition, within the framework of the parametric method one

more general conclusion was investigated which makes it pessible to obtain
an angular distribution for a charge exchange and to substantiate the
assumption of the first method as well as to present a point of fundamental
interest.

2. THE PARAMETRIC METHOD

Both nuclei are considered to be two centers of force traveling
along a determined trajectory; that is, a classical trajectory. The
probability of charge exchange is calculated; that is, the transition of
an electron from one nucleus to another during a collision. Calculations

are made in the first approximation whereby the distinction from a common
theory of distortion is contained in the selection of the function of zero

approximation which already includes time implicity as a result of the
motion of the nuclei.

The forces of interaction between the neutral atom and the ion

drop rapidly and the effect of charge exchange, as will be shown further

on_ in the case of a resonance of levels is already of considerable
magnitude at large ranges. Therefore, it is possible to consider without
gross error that, for instance, an ion in a given coordinate system de-
excites when an atom travels past the ion at a prescribed distance D in

uniform motion along a straight line with velocity v.

We will first of all examine a single electron problem. We will
select such a system of coordinates in which the ion is located at the
origin and the atom has the coordinates (vt, D, O); that is, the atom

travels in uniform motion along a straight line. Then the problem is
reduced to an investigation of the behavior of the electron in a field
with a potential energy which depends on time. The Schroedinger equation
will have the following form:
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Eh2 ]- _ Z_+ Ui(r) + UA(r') ._ = ih _-_ . (2.1)

Here Ui and UA are the potential energies of the electron in the field

of the ion and atom,respectively;

Jx2 y2 2 , _/( 2r = + + z ; r = x - vt) 2 + (y - D) 2 + z .

Before the collision the electron is located near the atom in

the fundamental state. This means that when t = - =, Y has the
following form

i mvx i (Eo+ mv2"
_o(r,)e_ __ _t= _ • (2.2)

Here ,0(r') satisfies the equation /78

h2

Z_' UA(r') ] %(r') (r')- _m + = E0_ 0 • (2.3)

i (mvx my2- -_--t)
The additional multiplier e appears as a result of

the progressive motion of the atom. In order to find the probability of
capture of the electron by the ion during a collision, it is necessary to
extend in time the wave function , up to t -*+ _ and to separate it into
functions of the final state:

i
---e t

=_ an(t)_n(r) e h n . (2.4)

Here _n are the wave functions of the electron in the field of the ion.

These functions satisfy the equation

h 2

[" _m A+ Ui(r)] _n(r) = en_n(r ). (2.5)

Then the probability of capture of the electron by the ion in an n -
state will be

Wn _- [an(+ (2.6)
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In order to find an, we proceed as usual by substituting the

expansion (2.4) in equation (2.1). We then have

i i

e-he t I -_,: tUA(r,)an(t)_n(r ) n = ih _n(t)_n(r)e n
n n

From this follows:

i- _ t

ih_ = _ _(r) UA(r' )_d7 h nn e (2 7)

It is obvious from the formulae (2.2) and (2.4) that all an, which

pertain to the discrete spectrum when t _ - 2, are approaching zero.
From this follows:

4= i

iha (+ o_)_ e_ cnt _ _*n -- dt • n UA_dT" (2.8)

In this formula we may substitute the expression (2.2) for @,

assuming in the zero approximation that the interaction between the atom

and the ion is absent, and consequently the probability of charge exchange

equals zero. Then the first approximation will be true only under /79

the condition that w < I. By substitution we obtainn

ihan(+ oo) =

2

_ i (E0+ mv _ i

j_ h 2 en) t _n* _mvx= e dt (r) UA(r')_0(r')e d_. (2.9)

We will investigate the simplest case of a collision between a

proton and a hydrogen atom. We will calculate ao, which corresponds to

a resonance charge exchange. Then

!
r r

%(r) -- e a; ,0(r,) _ e ;
na

e 2
uA--"7; % --

1967000875-008
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2 _ _i (r_r') i i my t
e [ a I _ mvx h 2

iha0 =- ---_Je • _T e • dT. e .
_a

At energies of less than I00 ev on the part of the approaching
roVE

atom the magnitude -_- becomes comparable to unity only in the case of

such x at which the sub integral function is already small. Therefore
i i mv 2

mvx h 2 t
e and e may be considered as equaling one unit for these
energies.

Then

R

e2( R)e-a
= -- I + R /(vt) 2 D2.iha0 " a a ; = +

Integrating by t from - _ to + _, we have:

2

-- °iha0(+ _) = e 2p (p) + p p ; p -- .v a

Thus,we have

[ ]w0 = 4p2 2Kl(P) + PK0(P) 2. (2.10)

Here K0 and K1 are the Bessel functions of the hypothetical case.

These functions are related to the Hankel functions of the first type.

Ko(O) = _. ,_i H (io); KI(O) _. - _ ,_m (ip).

Curve I in Fig. i gives the dependence of Ig w0 + Ig E on /80

the parameter of impact p. In order to directly obtain Ig w0, it is

necessary to use the line with the corresponding notation E on the right
side as the abscissa axis. For instance

E = I00 ev; p = 8.2; - Ig w0 = - I; w0 = 0.i.

1967000875-009
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The interrupted line which is presented is obtained _f we use the

asymptotic representation _2_ e'P instead 9f K0(P) and KI(P). As can

be seen from this graph, both curves coincide as far as p _" 2 is concerned.

Fig. I

Then

___v_ 2 2p 2w 0 = 2_e" 0(P + 2) • (2.ii)

As c'_n be seen from this graph in the case of small p, w0 is much

larger than unity and obviously our approximation is not suitable. It

is possible to assume (which will be proven further on) , that the

probability of a charge exchange in the case of these p varies between

zero and unity and therefore such charge exchange Frobability may be

considered to be on an average of 1/2. Then the effective charge ex-

change area will be

2

_'PO (2.12)

I The addition, which is due
where PO is the value p, by which w0 - _ •

to the probability of a charge exchange when 0 > P0' is insignificant

1967000875-010
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and consists of not more than i0_ of the result, as can be easily /81
proven. A more accurate expression is

._f I'X2
_-"2" '?0 + 2" / " (2.13)

Actually, in the case of p > P0' we have

w0 _ Ae -2p .

whereby

Ae-2P0 = i
2

Then the addition to the effective cross section equals

CO

.r ¢o ,) - o0.Ao = 2_A e "2p pdp = 2r,.A + "_ e = :_ + _"
P

and

_p2 _Po _ _ i

1
However, the assumption in itself that w0 = _ when p < P0' is

sufficiently rough so that a !0d0error is also probable in the
corrected formula.

The region which is shaded on the top (Fig. i) corresponds to
mva

such values of p and E, for which T 0 > i, and therefore the multi-
i i mv 2
mvx h 2 t

pliers e and e should not be assumed to be equal to unity.

We will now examine within which limits we have the right to
consider both nuclei as being classical particles. In accordance with
the uncertainty principle, there should be present a certain
inaccuracy in the determination of the coordinates and impulse of the

nucleus. In addition, during the period of collision, a scattering of
the wave pocket will take place.

1967000875-011
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In order te have the right to treat the nucleus as a classical
particle it is _ecessary that the inaccuracy in the determination of the

coordinates should i,_muoh less than the parameter of the impact during
the entire duration of the collision.

This period of time can be approximately evaluated as

2D
T_--o

V
X

Then, if the uncertainty of the coordinate was _ before the
collision, then after the collision it will equal

Ax' = _ (r__x)2 + (AVxT) 2 < D;

From these two formulae follows the natural condition /82

f_Mv < Mv
X X

(M is the mass of the nucleus)

Finally, by utilizing the uncertainty principle it is
easy to obtain

Mva
p _ > i. (2.14)

The last inequality should be very strong because we square the strong
inequality.

The area which is shaded on the bottom of the graph corresponds to
the values E and p for which

Mva
-_- p < I00. (2.15)

It is obvious that, in any case, beginning with an energy of I ev the
theory is suitable.

We will mention that this is the principal range of application,
contrary to the first range which is connected with the approximate

calculation of the integral and cannot be expanded within the framework
of a similar investigation.

The last assumption which we have made, to the effect that the

distortion in the trajectory of the nuclei might be disregarded, is
justified by the fact that the formulae are applied here for the case

when p _ I0. At such a distance for an atom with an energy of I ev

i

1967000875-012
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a devlation will be on the order of 1 , even if we take into consideration

the polarizing forces.

We will also mention here that all these considerations are

applicable, as can be easily proven, not only for hydrogen, but also in
all other cases which are examined in this paper. Therefore, the area of
applicability which is pointed out on the graph remains almost unchange-
able for all three curves which are presented on it.

We will finally put down a clear expression for the effective

cross section utilizing the fact that, within the range of applicability
of the theory, it is possible to substitute the curve on the graph with
a straight line with sufficient accuracy.

By disregarding the power factor it is possible to put down

-2p 0
Ew0 = Ce

i 2P0

2 E = Ce

In E = In 2C - 200 ;

i= _ - _ In E"_2.

By substituting E = 1 ev we find from the graph /83

= 3 0.5 - _ In (2.16)

(E in this case is measured in ev; _ is measures, as always, in a2).

Now let us examine a case when the resonance level is absen,t.
_" (c - E)th

Then, integrating with respect to t, the oscillating multiplier e
in (2.9) strongly decreases the probability of a charge exchange.

For instance we will take the case of two nuclei with different

charges Z e and Z.e. Let us assume that the nucleus with a charge Z e
a i a

had an electron in the IS state before the collision.

1967000875-013
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Using the formula (2.9) we will calculate the probability of

capture of an electron by a nucleus with a charge of Z.e also in its

fundamental state. Then, in the formula (2.9), we will have

Z.r (Za--3;I Z r(7) a
Z \ 1/2 a I/2 a

, = e ;
_n _ e 40 \ha3/

z e2 2 2 2 2
=_ a_E_- ez e z 2

UA r' ; E0 - t0 = a + i e 22a 2a = _a (zi - z ').a

Integrating by dT, we will find

8 e2(ZaZi)5/2 [R_ R R i_

- -- Z - -- Z

ih_0 = ....... a i a

a(zi2 _ Za2 )2 e -

2 2 R I i e2 zi2_Z2a

Z - g - --Z
. i a a i h 2a ( )t

22. e e
1

Integrating with respect to t(R = _(vt) 2+ D 2), we will find

5

wo ---laolZlt _-oo=28 ("a"i) 0,2
2 2)4 x

(z i - za

2 2

x Ko a " _ i 2 " A. _i (217)
1 i " "

1967000875-014



13

Here

A =J4z 2 + cz2 2 - z 2) 2
2 a a (zi a

e
_ _"

hv' /z 2 _2 2 2)2A. = 4. + (z. -z •
I i i a

For instance, for the case when z = ], z. = 2 (the collision of
a i

a hydrogen atom with an _-particle)

w0 34

J16 + 9_2

I
In the case when E = I00 ev, w0 = _ already when O _ 0.04.

However by using such a method only qualitative results can be
obtained, because the assumption that the nucleus travels uniformly

during the duration of the entire process is not true for the energies
of the nuclei which are comparable in magnitude with the variation in
their levels. A certain role is played here by the energetic exchange
between the nuclei and the electrons, and this exchange cannot be fitted
into the scheme of the parametric description.

A very interesting fact is that during the collision of a hydrogen
atom with a _-particle a "random" resonance takes place between the

is and 2s hydrogen levels of the 2p _-particle. We compute the probabil-
ity of capture at the 2s-level, Then we will have i.Ithe formula (2.9)

!
r r

_n - _Ta I - e ; _0 = e ; UA " _'F ; E0 = 6n .

After integration we have:

2e__2 2 -p R = I I(vt) 2 + D2iha2 = 3a O e ; P = a a

1967000875-015
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And after integrating with respect to t we have:

16 cz2p2
w 2 = -_ [PKo(P) + (2 + p2) El(P)] 2 (2.19)

The dependence Ig w 2 + ig E on @ is presented in Fig. 1 by
Curve II.

It is easy to prove that the probability of capture at the 2p-level
equals zero in the first approximation.

By making the same conversions as previously, we obtain

= _ (12.7 - _ in E).

if we assume that the hydrogen atom de-excites, and E is the energy of the
n-particle.

Thus, the electron should most frequently be captured at the
excited level and then, with emission of the quanta (X _ 3002) or in the

case of an inelastic impact of the second type, the electron should
proceed to the ground state.

It is difficult to observe this effect experimentally because of

the short wavelength of the emitted light and the difficulties in
obtaining atomic hydrogen. However, it is probably impossible to select
two such substances for which both these difficulties would not exist.

The only necessity is that the difference between the levels should not
be great.

Identifying the difference in levels by A, it is easy to /85
obtain the condition of resonance from the formula (2.17):

e 2a
h-_--2A < i (2.20)

e

or approximately

A< 0.i_--_.

Here E is the energy of the colliding particle, A is the atomic
weight of the particles.

E and A are measured in electron volts.

1967000875-016
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3. THE ADIABATIC METHOD FOR CHARGE EXCHANGE CALCULATION

In the case of a resonance charge exchange another method can be
applied which will yield results that will be valid within the same limits

as before (in the unshaded part on our graph). However, this method will
make it possible to eliminate the assumption that w < i. By the same
token we will have the opportunity to check the assumption on the be-

havior of w(p) in the case when O < P0"

We will assume that velocity of the atom is small and that,
figuratively speaking, the electron will succeed in executing many turns

along its orbit before the reciprocal position of the nuclei will undergo
any noticeable change. That means that we will be able to consider, in
null approximation, the nuclei at each moment as if they have relaxed.

We will see that the expression for the probability of charge exchange
will be obtained already at a null approximation. The first approximation
and all other approximations which are obtained in a normal manner will
not change the result and will allow us to become convinced of the proper
selection of the null approximation.

We will examine the wave function of an electron which is located
in the field of two identical nuclei which are at a considerable distance

from each other. As before, the nucleus is considered to be classical.

Then each energy level of a separate atom will correspond to two closed
levels in the given system. In other words we have two solutions - a
symmetrical and an antisymmetrical solution in regard to the coordinates
of the nuclei.

We will define these solutions by

(r, R, t); _' (r, R, t),ns na

and the corresponding energies

E (5);E (5).ns na

Here _ is the radius vector of the electron; /86

R is the radius vector of the relative position of the nuclei.

1967000875-017
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At sufficiently large R we can write

(_ -_e-_ER) t + _ _ -- + n
ns _nl n2 h n I +

t

= _ - e ;

ns ns /2 + 2Qn

i i _F A + Bn_
-wE t _ _ _ + n t

na _nl _n2 h n 1 + QI . (3 I)= _ (3 R)e = e

na na _2- 2Qn

Here the following definitions are introduced:
A is the Coulomb integral of interaction,n

B is the resonance integral of interaction,n

Qn is the superposition integral.

For these definitions we have the following expression

An(R ) = J_l_nll2 U2d_ ;

Bn(R) = _ _*nl U1 _n2 dr ;

Qn(R) = _ _* dTnl _n2 '

_nl and _n2 are the specific functions of the n-state of the electron in

the field of the first and second nuclei; UI and U2 are the potential

energies of the electron in the field of the first and the second nuclei,
respectively.

The applicability of the formulae is determined by the smallness

of Qn in comparison with unity for large R-values, and therefore we might

write approximately:

i i
- + ; _ =ns --_ (_nl _n2) na --'_ (_ns " _n2);

= E + A + B ; E = E + A - B . (3.2)Ens n n n na n n n

1967000875-018
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Then the wave function will be:

i i
-wE t --ns h E tna

=7 e ; _ =_ e • (3.3)ns ns Ha na

These functions, according to the original assumption, should be the
approximate solution to the equation.

We should obviously consider that the force centers travel and that

ns' _na' Ens and Ena depend implicitly on time by R(t) . That is, for

instance,

- _ Ens
= _ [R (t), _] ens ns

However, in a wave function described in this manner, no /87
consideration is given to its "pre-history". The value of the phase

- _ E(t) t

multiplier e " at the moment to does not depend in this case on

the form of the function E(t) at all values of t; it depends only on the

value E(t) at the moment to . In fact the phase is an additive magnitude

and is being "accumulated" during the entire duration of motion. Let us

assume that the starting moment is t = 0 and we will find the phase at

the moment t, taking into consideration this fact. For this purpose we
will break up the time segment (0, t) into small intervals:

tO = 0 < t] < t2 • • • < tn = t;

At I, At 2, • . . Atn;

At.1 = t.1" tl-''t

The phase increase at each interval will be:

E(tl)At I, E(t 2) At 2, • . . , E(t n) At n

with an accuracy to the small numbers of the higher order.

1967000875-019
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Proceeding to the limit we will obtain the complete phase change

t

_ E(t) dt. (3.4)

0

Thus,_ and _ will be written as follows:
ns na

t t

i_E dt - _i_E dt
n 0 ns n 0 na

= Y e ; Y = _ e (3.5)
ns ns Ha Ha

In the presence of an R, which does not depend on time, these functions

pass on to (3.3).

We will mention that we have not as yet made any assumptions on

the character of the relative motion of the nuclei.

The solution to the equation (2.1) will be sought in the fo]]owing
form

t t

" h Ens - h o na

=I an(t) _ns e + bn(t) _na e (3.6)

n

By substitution in the equation we will obtain:

t

h E dtns

_an (t)_. ns + an(t)_n_ e +
n

t

i!-_ E dtna

+ [bn(t) _na + bn(t) _na]e = 0;

1967000875-020



19

t
i /88

- _ _ (Ems - Ens)dt

_ +_a e f Y* d- Y dT +n m ns dt ms

t
i

- _ f0 (gma - Ens) dt
+be m

Considering that as a result of orthogonality and normalization,

fY: dt Tm dT = - f Ymd '¢* dT'n

we have:
t

g E dtns

n = _ Y d_'_*ns dT • e ;

t

i _0 dt, h Ens

bn = f Y _t _na dT • e . (3.7)

Further on we obviously have to select Y in a null approximation
and suE: _ :ute in these formulae. In order to execute this, we will

Eirst e^amine the physical meaning of an, b at large distances betweenn
the nuclei.

Then t

- g E dtns

an(t) Yns + bn(t) Yna = an(t) _2 (Ynl + Yn2)e +

i t

-_'_0 E dt
na+ bn(t) (Ynl - Yn2 )e =

- _ E dt i - d
ns

--"e + b 0 (Ena
n n Ynl +

-g8 (Zna-Zns)d
+ an bne 0" Yn2 "
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From this can be seen that the magnitude

t 2

I " _ (Ena - Ens) at

Wn(1)(t) = _ an(t) + bn(t) . e ,.

= I - _ (Ena - Ens) at !2
w(2)(t)n _ an(t) - bn(t) e (3

The essence of the probability is to find an electron in an n-state /89
near the first or the second nuclei, respectively.

When t - - = (before the charge exchange), we obviously should

_I) _) and all remaining w = 0 By definingput down w (- = i, n "

0

(Ena - Ens)dt = P (3.9)
--O0

(P depends only on the form of the function R(t); that is, in the final
calculation, on the parameter of the impact and the energy of the
colliding particles.) We obtain from these conditions

an (- =) = bn (" _) = 0 n # 0; a0 (- =) =

I =) = I iP=---_, Do (- -'-_ e-

In a nul] approximation we will therefore have

1 - ie) ._/(o) = "_ (V/os + _/Oa' e . (3 IO)

If we substitute this expression for Y in the formula (3.7) and if we

should make a very general assumption about the synnnetry of the orbit of
the nuclei (that is that R( - t) = R(t)), then it can be easily seen that

_(t), _o(t) will be antis3nmnetric time functions, and therefore
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a0(+=) = a0(-_) = i,

i -iP

b0(+ co) = b0(- oo) _ f2 e

By substituting these values in the formula (3.8) when t -_+ co and

taking into consideration that in the case of an orbital symmetry, we have

OO

(E0a- E0s)dt : _ (E0a- Eos) dt = P;
- co 0

_I) (+ _) I -2iP 2w =_ i+ e i = cos P;

w_2) (+ =) I I - e-2iP 2=_ [=sin P.

W0(2) (+ oo), is obviously the probability of charge exchange and

we have therefore in explicit form

t=

1 ___ - E0s ) dt.w = sin2 _ (E0a

If we should assume that the distance between the nuclei /9u
remains large, so that w is small, then it is possible to utilize

the expression (3.2) in the case of Eoa and E0s in the first approx-
imation. Then we will obtain

w0 = s in 2 1 __ _ [(E 0 4. A - B) - (E 0 + A + B)] at =

+_ +_ 2

__ in2 1 _= [I_ ) ]s _ . B dt _ _01 U2 _02 dT dt , (3.11)

which coincides with the expression (2.9) of Section 2 with an accuracy

to values which we have already disregarded.

I
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Thus, at large impact parameters we have obtained for w0 the

preceding expression and at small parameters, as was assumed in the

beginning, we obtain a variation in the probability, rangin? from zero

to unity.

If the potential energy of interaction between an atom and an ion

is known to us, then, considering that the particles travel along a

classical trajectory, we easily obtain

w0sin'$m%.= - ..... , (3.12)

here: D is the impact parameter;

M is the given mass of the nucleus;

E is the energy of the nuuleus;

R0 is the largest root of the expression which is located under
the radical.

All values should be considered as being in atomic units.

The values E0a - Eos and U for various R are known, for instance

in the case of H+, H (molecular ion of hydrogen), and thus it is possible

to determine the correction for the trajectory distortion, as well as the

angular distribution, if we consider that the classical expression for

the inclination angle is

.-.-,(., °.
In order to evaluate the range of application of these formulae

we will mention that the nuclei are treated as before as classical

particles, and the earlier obtained evaluations remain valid. /91

In addition, there should obviously exist an evaluation which

would limit the speed of motion of the nuclei, as was pointed out in

the beginning of this section.

In order to conduct a relative evaluation we will mention that,

in the case of a slowly changing potential from point to point, the

coordinate part of the wave function might be presented as follows:
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i

"-_f pdx
e

The condition of applicability of this semi-classical consideration will
be, as is known

dX h
dx < I, where X =-P

Analogously we have also assumed here that the nuclei travel

slowly; that is, the potential changes slowly in time and the time part
of the wave function was presented as:

i fEdt
e

The condition of applicability of such an assumption will be analogously

d__T_T h
dt <i; T =_,

or

2
dE E2 but E e__ dR

h _-[ < , _ a ' d-_ _ v.

From this

4
dE e__

hv_< 2"
a

It is easy to prove that

2

d__E f _R_ e___dR = a J" 2 '
a

R.

where f(_) is the function which decreases exponentially with the

increase of R and reaches a maximum on the order of i when R _ a. Thus,
we obtain

2

e__ > I. (3.14)hv

I
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This limitation coincides with the limitation which appeared in our

paper in the preceding section as a result of the approximate integral
calculation.

i

mvx
Actually the multiplier e appeared under the integral, /9_9

namely as a result of the motion of the nucleus. Here however we make

an over-all examination of the wave functions of the electron in a field

of relaxed nuclei, and we disregard the distortions which are introduced

by their motion.

With this fact in particular is connected the result that in the

first approximation we have obtained a zero probability of capture on the

higher levels: by disregarding the distortions which are introduced by

the motion of the nuclei we obtain a symmetrical problem relative to

time, and the coefficients a , b will have identical values whenn n

t = ± oo at any given approximation and not only the first.

We will also mention that we will disregard here the Van der Waal

forces of polarization just as we did in the preceding chapter. However,

as we have already seen, the charge exchange is determined by the

separation of the levels E0s - E0a , and the Van der Waal forces have no

noticeable effect on this separation since these are gravitational forces

independent of the symmetry of state.

However, the effect of these forces should be evaluated during the

determination of U(r) in the formulae (3.12), (3.13).

For the sake of definition we have investigated here the collision

between H+ and H, however the formulae (3.10), (3.11), and (3.12) are

also true for any other case because the form of the specific functions

was not definitely corrected anywhere in the entire conclusion.

4. CHARGE EXCHANGE DURING THE COLLISION OF He+ AND He

A three electron problem should be solved in this case.

The Schroedinger equation has the following form

h2E-. .
2 2 2] d

+ e___..+ e..e__+ _ j _ -- ih _ _. (4.1)
r12 r13 r23
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The initial and final states of the system are presented
schematically in Fig. 2.

We will disregard the exchange in the beginning and will consider

that the electron e2 transfers from one nucleus to another. Then the
function of the initial state will be

i i
mv(x 2 + x3) - _ (Em + Cn + mv2) t

_0(_2 _3) _0(_i ) e • e , (4.2)

and the function of the final state, on which the expansion is /93
conducted, will be

mv 2
i - i (E + _ + _--)tmvx3 h m n

_m(_l _2)_n(_) e e • (4.3)

In these expressions _m and _n satisfy the equations:

h2 2 ]
- 2_m (&l + &2) 2e2r1 2e2r2 + erl2 _m(_l 72) = Em _m (rI" _2); (4.4)

h2

[- _m A3- _33 ] _n(_3 ) = en_n(_3)" (4.5)

¥ ¥

Fig. 2

I
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The expansion of the unknown function Y according to the finite
states will be

2
mv

i i (E + c + _--)t
I amn(t) _m(71 _2) _n (73)e_ mvx3 - h m n= , e (4.6)
mn

Proceeding in the same manner, as in the case of hydrogen, we find
i i mv 2

mvx h 2 t
by again disregarding the multipliers e and e that

ihamn(t) = e2 _m (71' 72)_n (7_)x

x < -_- 2 2 i I _ -_ r 73, t) (4.7)- ' ' + -- + -- _ (rl' 2' " "
r3 rI r2 r13 r23

By substituting (4.2) for _ in the null approximation, we obtain
for the resonance charge exchange

2 _ -. < 2 2 2, + l_!._+ 1____",,
ihao0 = e _0 (rl' 72) _0 (7_) • r3 ri r2 riB r23 / x

x _0 (r_r_) _0 (rl) dTl d_2 dT3 = e2 (II + 12 + 13 + 14 + 15)" (4.8)

The function _0 is accurately known:

2r3

8 \1/2 a_0 = --_ e .
_a

A good approximation for the function _0 is the expression /94

z3 1/2 e- a
_0 _ (rl + r2) z -- 2 16 I6

ga
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If we would substitute these expressions in the formula (4 8_

then the integrals could be calculated to the end. For this purpose it
is necessary to transfer to elliptical coordinate_.

We will obtain

3 1 2

= z (I + zp + _ z p2) xii = 12 1 210
a (z+ 2)6

[ I -zp- (I+ z + 2 ) - 2(z+l)p] .x P e P "--7 e ,

z I 2 - zp.

13 = a (z + 2)6 i + zp + _ z2p e ,

14 1 29 . Z3 {i - zp [i II 3
- a (z + 2)6 e - + _-_ (z + 2) + (z + 2)2 P +

+ (z + 2)3 p2 e 2(z + l)p_ + zp + _ z p ; (4.9)

1 29 z4 $ -zp 4z3 _(z + 2) (5z + 4)
15 --- .... L(I + zp)e -a

(z + 2)6 (3z + 2) (z + 2)2 z

" 3z + 2 P e + + 2 + 3z + 2 p e-

P = al_ (vt)2 + D2

After integration with respect to t we have

iha0 (+ _) - 2e2v_(" 1.35 - 5.57 02) K0 (zp) - 18.89 0 K I (zo) +

+ (1.35 + 7.70 O - 4.45 04) K0 2 (z + i)0 +

+ (12.01 p- 2.50 p3 - 0.97 p5) K1 [2 (z + I) p] } . (4.10)
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r q r q

The part containing K0 _12 (z + l) p i and KI Lr (z + I) p when

@ > 3 in this expression _s negligibly small in comparison with the first
part due to the rapid decrease of these functions, and therefore it may

be disregarded. Then, by substituting once more the asymptotic presen-

tation of the function K0 (z@) and K I (z@), we have

i
w 0c2_ (5.57 O + 18.89 p + 1.35)2-

2z@
= -- e (4.11)

zo

If we should carry out these simplifications, then we would also
obtain in the preceding formulae

w = _ 7.0 - in • (4.12)

Curve III in Fig. i represents the dependence of /95

ig w0 + ig E on O for that case.

Let us see now how our results will change if we take into consid-
eration the property of synm_etry of the wave function.

In order to obtain correct functions by which the decomposition is

conducted, the functions (4.3) should be anti-symmetrized, for instance,

along the coordinates rl, r3, Then

1 r- -_ -*i

: _ amn(t) _2 Uwm (71'r2)_n (r3) "
mn

i

- _ (Em + 6n) t (4.13)q,e" _fm (72' _3 ) _n (_{) :

i
_" mvx

if we assume, as we did everywhere, that the multiplier e and
i 2 t

- mv
e equal a unit.

It should be mentioned that the properties of orthogonality and
normality are not carried out properly for the functions along which the
decomposition is conducted. However, we will always assume that these

properties are accurate by disregarding the higher degrees of the super-
posed integrals which appear during a strict examination. Since we are
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interested only in collisions with large impact parameters, this assumption
does not impair our results.

It is also necessary to symmetrize the null approximation.

According to the adopted scheme, it is necessary first of all to symme-

_(0)
trize by rl, r2 and then we must anti-symmetrize by rl, 33:

i

_, _, _ _, ] - _ (E0 + e0) t- *0 (rl' r2) _0 (r2) " _0 (rl' r3) '% (_2) e =

i
• -_, - _ (E0 + e0) t

= i__[@0 (r{, r3) _0 (_i) *0 (r_, r_) _0 (r3)] e • (4 14)

Further on we do the same as in the preceding case with certain
complications.

By substituting the resolution _ in the equation (4.1), we obtain

i

ihamn(t) [_m (rl_ _2) _n (_3)- _m(_2 ' _3) _n(_l )] e" _ (Era+ cn)t =
mn

2 2 2 + I + i ] _m (_I' _2) _n (_3) "
mn

i

2 2 2 i I ] -_ _ " _ (Em+ en)t- [- (rl)f e . (4.15)
r3 r2' r_ + --r12+ --r13 $m (_2' r3) _n _'

Considering the functions by which the resolution is /96
conducted as being orthogonal, as was previously stated, we have

I
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_,,%o=_ j'j'J"r.,,*_,,_,_,*_. * - *<_)7_L'O :go (r3) ¢'0 (r2' r3) ?0

[( ' ' ' ' ')Z ....x ..... "r+ _+ _ " ("1 d t '' amn _m ' r2) n 'r3)
r3 rl r2 rI3 r23 mn

- , , -- -- a * , t_ (7{) dT 1 dr 2 dT 3
rl r2 r3 r12 r23 mn mn m (r2 n

(4.16)

Now it is necessary to see which sums (located after each of

the parentheses) pertain to which parts of the function _(0)

For this purpose we will resolve _(0) by the final states

i
_ -- + ,0) t

-" - , e =
_(0)_ [*0 (r2' _;)_0 (_1) '_0 (_1 r2)#_0 (r3)] h (E0

i
-_ (E + tm _n) '

=_a(0)[_m (_l _2) _n (_;)- _m (r2 r3)_n (r{)]mn ' , e
mn

where from

mn ' , x

i

- _ (E0 + co - Em - cn) t
x dTi dT_ d_ 3 • e • (4.17)

The products which are located opposite are proportional to the
cube of the transposition integral, and the two other products are

proportional to its first power. By disregarding the first we obtain
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i

I a(O)mn (_i' r2) _n (_3) - _ (Em + on) t_m • e =
mn

i
(Eo + c0)t

= '_0 (7_, 7_) _0 (_1) . e

_ i (Em + en) t
a(O)mn9m (r2' _3 ) _n (r[) e = (4.18)

inn
i

- _" (E0 + e0)t

= ')0 (r_, r_) g0 (_3) e

Thus

2ihao0 = e2 _[*_ (_1' _2)_ (_3) *0¢ (_2' _3 ) _ (rl)] x

x r3 rI' r_ + --r13+ --r23 *0 (r2'

2 2 2 1 1

-(- r 1 r_ r_ + -- + --)*0 (_i' _2) g0 (_3)] dTl dT2 dT3" (4.19)r12 r13

Schematically the right part has the following form

Both products I-I and 2-2 are equal; also equal are the products 1-2
and 2-i.

We have thelefore

iha00 - f - g. (4.20)

Here: f is the integral (4.7), which was already calculated;

g is the correction which was obtained as a result of the exchange
considerat ion.

I
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-- X

g --e _0 (rl' r2) _0 (r_) r! r_ r_ + r12 r13

By substituting the values *0 and g0 we could have calculated

the integrals K.; however, it is obvious that all of them will be
i

R
- 2(z+l) _[ andindirectly decreasing with the increase of R, since e

will therefore introduce a correction only to that part of the integral,
f, which we have already disregarded. .Thus,the electron exchange plays
no role during the charge exchange, since this effect is already con-
siderable at large impact parameters.

5. THE CASE OF ARBITRARY ATOMS

For the calculation of resonance charge exchange we can again
utilize the fact that the probability of the process is great during
large parameters of impact, and therefore the fundamental role in the
formulae is played by the behavior of the wave function of the electron

at large distances from the nucleus. Therefore, we may consider approx-
imately that

r

- -2/2-_-mUih
*0 = Ce (5.l)

or

m. r

*0 e- a= , (5.2)
_a

where

U.
2 i

Z ------
13.5 '

Ui is, in this case, the ionization potential expressed in electron

volts.
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In addition the function UA (r') can be considered as being

equal for large r'

2

UA ( e__r') = r' (5.3)

as a result of screening.

Then we have, according to formula (2.9)

2 3 _ z (r + r') 2

ih$0 = e z3 _ e a " --r'dT= _ __eaZ(I + zp) e-ZP;
_a

/ e2) 2 2 [ (_0) + @ K0 (zp)]2w0 = _ _v " 4z2 p 2El • (5.4)

We have arrived at the same formula which was used for the case

of hydrogen. However, instead of p, we always have _0. Thus, we have
in the final result

o = --2z2 10.5 - _ In _j = U_i 8 1.0 Ig _ . (5.5)

This formula should be correct for atoms with one valence electron.

In the case when there are two valence electrons present we come
to the case of helium, where both electrons reciprocally screen each
other. We obtain analogously for atoms with two valence electrons

o - - 0.3 in _.J . (5.6)
2z2

We will mention however that the formula (5.5) also yields a fair
result for helium. We obtain

2 (7.9 -0.37 in E)2

I
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instead of the more accurate

2 (7.0 - 0.3 In E)2

6. COMPARISON WITH EXPERIMENTAL DATA

We will now examine to what degree the obtained resu! ts are
confirmed by the experiment. Experimental results are absent in the
case of atomic hydrogen. In the case of helium such results are avail-

able. Figure 3 gi_Tes the results obtained by Wolf. The interrupted line
corresponds to the theoretical result from formula (2_13). From this

graph it can be seen that the theory yields a result which exceeds some-

what the experimental data; however, it should be mentioned that /99
these data themselves are quite inaccurate and, as was shown by Sena,
they require certain corrections.

The decrease in the cross section with energy also takes place
somewhat faster than was predicted by the theory. The dot and dash line

in Fig. 3 pertains to the evaluation which was made by Sena in his book_

o = _ _... (6.1)
l

_"_II "Dq'_ I _ ,iiI IIII q

Q I0 •
_illl O

#__ .,.. F_

Fig. 3

i
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However, this evaluation was made under assumptions which delib-

erately decreased the effective cross section.

In addition, it is possible to compare the general formula (5.5)

for any given element with the experiment. The theoretical curve and the
experimental points are given in Fig. 4.

\
+ \

0 :M9 A¢ :Ne Me _
;0 t.1 ZO

Fig. 4

Once again, the results in the majority of cases are somewhat

lower than those given by the theory, with the exception of mercury. We
will mention that the evaluation (6.1) of the dependence of the charge

exchange cross section on the ionizing potential satisfies the experi-
mental data much better, in spite of the fact that the conclusions are

very loose and elementary.

The difference between the result which was obtained here and the

result of an evaluation for elements with a low ionization potential, for

instance in the case of potassium (Ui = 4.3 ev), will appear particularly
marked. Measurement of the effective section of charge exchange for this

case should serve in part as proof of the theory.
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CONCLUS ION /I00

In this manner we have calculated the complete cross section of a

resonance charge exchange in the cases of hydrogen and helium, with the
presumption that nuclei are in essence classical particles, and we have
obtained formulae for the calculation of a differential effective cross
section.

In addition we have obtained an approximate expression for the
cross section of a resonance charge exchange in a general case. Further
an evaluation of tl;eapplicability of the method was conducted and we
have also evaluat_ now accurate a resonance level should be in order for

the effective cross section to reach values which are common for a

resonance charge exchange.

A comparison of the obtained results with the experiments yielded
a satisfactory agreement.

The results proved to be applicable for the velocities of ions

which are present in a plasma of a gas discharge.

Translated by Joseph L. ZygielbaL_
Electro-Optical Systems, Inc.
Pasadena, California
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